

ST. JOSEPH'S COLLEGE (AUTONOMOUS)

BENGALURU-27

Estd.1882

Recognised as "College of excellence" by UGC Re-accredited with A⁺⁺ grade and 3.79/4.00 CGPA by NAAC Awarded DBT star status and DIS FIST grant By Ministry of Science and Technology, GOI

DEPARTMENT OF BIOTECHNOLOGY

Funded by the DBT (Dept. of Biotechnology, Government of India) Star College scheme since 2014 and elevated to Star Status Funded by the the Govt of Karnataka Vision Group for Science and Technology (VGST) project

SYLLABUS 2018-2021

DEPARTMENT OF BIOTECHNOLOGY ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE SYLLABUS -2018 -2021

CLASS	YEAR	SEMESTER	PAPERTITLE AND	No of	No	Credits
			PAPERCODE	hrs	of	
				/wk	hrs	
					/sem	
B.Sc	Ι	Ι	BT 118: Fundamentals of	4	60	4
			Biochemistry and			
			Microbiology			
		II	BT 218: Cell Biology and	4	60	4
			Genetics			
B.Sc	II	III	BT 318 : Molecular Biology	4	60	4
			and Biophysics			
		IV	BT 418: Bio-Statistics	2	30	2
			BTOE 418: Biotechnology	2	30	2
			Now and Beyond			
B.Sc	III	V	BT 5118: Immunology	3	45	3
		V	BT 5218 : Genetic engineering	3	45	3
			and Bioinformatics			
B.Sc	III	VI	BT 6118: Entrepreneurship,	3	45	3
			Industrial and Medical			
			Biotechnology			
		VI	BT 6218: Plant, Environmental	3	45	3
			and Animal Biotechnology			

PRACTICAL

CLASS	YEAR	SEMESTER	PRACTICAL PAPER TITLE AND PAPER CODE	No of hrs /Wk	No of hrs /Sem	Credits
B.Sc	Ι	I	BTP 118 : Techniques in Biochemistry and Microbiology	3	33	1.5
		II	BTP 218: Techniques in Cell Biology and Genetics	3	33	1.5
B.Sc	II	III	BTP 318 : Techniques in Molecular Biology	3	33	1.5
		IV	BTP 418: Biostatistics	3	33	1.5
B.Sc	III	V	BTP 5118 : Techniques in Immunology	3	33	1.5
		V	BTP 5218 : Techniques in Genetic engineering and Bioinformatics	3	33	1.5
B.Sc	III	VI	BTP 6118 : Industrial Biotechnology	3	33	1.5
		VI	BTP 6218: Project work	3	33	1.5

Semester	I SEMESTER
Paper code	BT 118
Paper Title	Fundamentals of Biochemistry and Microbiology (30 + 30 hrs)
Number of teaching hrs per week	4
Total number of teaching hrs per semester	60
Number of credits	4

This paper aims to introduce students to basic concepts in Biochemistry and Microbiology, with key emphasis on classification and functions of biochemical macromolecules & taxonomy and morphology of prokaryotic and eukaryotic microorganisms.

Scope: The course is tailored for undergraduate students of Biotechnology and Biochemistry. It deals with key concepts in Biochemistry and Microbiology, besides providing opportunities for hands on experiments involving isolation culturing and study of microorganisms and estimation of biomolecules.

BIOCHEMISTRY	30 hrs
Biochemical evolution Prebiotic reactions and molecules Urey Miller Experiment	2 ms 1 hr
Biochemical composition of living organisms. Role of matter in biological systems.	1 111
Chemical bonds in biological systems.	1 hr
UNIT 2-Carbohydrates	4 hrs
Classification, structure of monosaccharides (trioses-PGA, DHAP, pentoses-Ribose,	
Deoxy-Ribose and hexoses-Glucose, Galactose, Fructose), Disaccharides-Sucrose,	0.1
Maltose, Lactose and Polysaccharides-Starch, Glycogen, Occurrence and functions. Active Learning: Blood glucose control-Role of insulin and glucagon, Glucose Uptake,	3 hrs
Types of GLUT with functions	1 hr
UNIT 3-Proteins	7 hrs
Classification and Structure of Amino acids, Zwitter ion concept, Isoelectric pH, Concept	•
of pKa and Buffers	3 hrs
Levels of organization of proteins- Peptide Bond, Primary and secondary structure,	0.1
Principles of extraction and purification of proteins - solt and solvent procinitation	2 hrs
Dialysis for protein purification	1 hr
Active Learning-Classification of proteins based on structure function and composition	1 m 1 hr
There is a substitution of proteins bused on structure, function and composition	1 111
UNIT 4-Enzymes	5 hrs
Classification – types and functions, enzyme units. Cofactors – types, examples	
(NAD, FAD) with functions.	1 hr
Active site, Role of tertiary structure; Specificity-absolute, stereo, group,	
Mechanisms of enzyme catalysis-Models: Lock and Key and Induced fit.	2 hrs
Concepts of Km and Vmax. Enzyme inhibition – competitive, uncompetitive and	2.1
Non-competitive	2 nrs
UNIT 5-Lipids	5 hrs
Classification, functions and biological role of lipids	2 hrs
Classification and Structure of fatty acids	1 hr
Properties of triacylglycerols and test for purity of lipids.	1 hr
Properties of phospholipids, sphingolipids, glycolipids, steroids and amphipathic lipids	1 hr
St. Joseph's College: Biotechnology UG Syllabus:	2018-2

	4
UNIT 6-Nucleic Acid	5 hrs
Chemical composition, structures; nucleosides, nucleotides; Watson & Crick model,	
Types of $DNA - A$, B and Z	3 hrs
Types of RNA with structure and functions	2 hrs
UNIT 7-Hormones	2 hrs
Definition, Classification (Exo/Endo/Paracrine; Peptide/Steroid) with examples	1 hr
Hormones of the Hypothalamus, Anterior and Posterior Pituitary with target organs and	
functions; Nature of hormone-receptor interaction	l hr
UNIT 8-Vitamins	1 hr
Active learning-Classification, Sources, RDA, functions and deficiencies	1 hr
MICROBIOLOGY	30 hrs
UNIT 1-Microbiology-Then and Now	2 hrs
Historical evolution of microbiology, Recent Advances	
UNIT 2-Control of Microorganisms	4 hrs
Control by physical agents, chemical agents, antibiotics and other chemotherapeutic agen	ts.
Introduction to antibiotic resistance	
UNIT 3-Taxonomy	4hrs
Introduction to classification of bacteria (Bergey's Manual), GC Content and chemotaxon	nomy.
Basics of conventional and modern taxonomy	3 hrs
Active learning: Identifying the Bacteria from Bergey's manual.	1 hr
UNIT 4-Prokarvotic microorganisms	10 hrs
Bacteria-Cell wall, Capsule, Flagella, Fimbriae, Pili, Plasmids, Endospore, Reserve food.	
Characteristics of E.coli and Mycoplasma	5 hrs
Virus-Classification, T-Even structure, life cycle of bacteriophage lytic and lysogeny,	5 1
Characteristics and epidemiology of HIV	5 nrs
UNIT 5-Eukaryotic microorganisms	5 hrs
Protozoa-general features, pathogenic protozoans, life cycle of plasmodium.	
General characteristics of Fungi, Introduction to Yeasts and its economic importance	2.1
Active learning: Searching algal specimen from your locality	3 nrs 2 hrs
Active learning. Searching argar specifien from your locanty.	2 1115
UNIT 6-Nutrition and growth	5 hrs
Autotrophic and Heterotrophic bacteria, Growth phases, Synchronous growth, Arithmetic	
growth, continuous growth, measurement of growth.	4 hrs
Active learning- Bacteria in extreme environments.	1 III
Reference	
Principles of Biochemistry by Lehninger	
Biochemistry by Stryer Principles of biology by Prooker, Wiemsier Grehem and Stilling	
Microbiology by Pelczar	
Microbiology by Frobisher	

PRACTICAL I-30 hrs BTP118: Techniques in Biochemistry and Microbiology

- 1. Preparation of media: NA, NB, PDA, and RBA Instruments: Microscope, Autoclave, Hot air oven, Laminar Air Flow, Incubator, Colony counter and pH meter
- 2. Pouring of prepared media and preparation of media plates and slants. Isolation of organisms from air by air exposure method Isolation of organisms from water by: Spread plate method
- 3. Study of colony characteristics of bacteria and fungi from air and water sample. Staining techniques using pure cultures isolated: Bacteria- Gram staining
- 4. Fungal staining Lactophenol blue staining
- 5. Pure culture techniques: Streak plate (5 different types), preparation for Biochemical tests of cultures.
- 6. Introduction to molarity, molality and normality, Calculations for solution preparations. Instruments: Handling of colorimeter and spectrophotometer.
- 7. Estimation of proteins by Lowry's method/Biuret method.
- 8. Estimation of Reducing Sugars by DNS method.
- 9. Estimation of DNA by Diphenylamine method.
- 10. Estimation of RNA by Orcinol method.

Semester	II SEMESTER
Paper code	BT 218
Paper Title	Cell Biology and Genetics (30 + 30 hrs)
Number of teaching hrs per week	4
Total number of teaching hrs per semester	60
Number of credits	4

This course introduces the student to the structure, physiological properties and organelles of eukaryotic cells and teaches the basics of Mendelian and Population Genetics.

Scope: The Cell Biology and Genetics course is structured for undergraduate Biotechnology, Biochemistry and Genetics students. The Cell Biology section deals with the basics of cellular and organelle structure and function, besides introducing molecular events in signal transduction and the cell cycle. The Genetics section of the course deals exhaustively with Mendelian genetics and introduces population genetics.

CELL BIOLOGY	30 hrs
UNIT 1-Cell Structure Cell Sizes, Prokaryotic and Eukaryotic cell structure	1 hr
UNIT 2-Plasma Membrane Components of cell membranes: Phospholipids, Proteins, Carbohydrates and Cholesterol	4 hrs
Structure of the plasma membrane: Fluid Mosaic Model Characteristics of cell membranes and Membrane transport <i>Active learning exercise: Diffusion and Osmosis</i>	1.5 hrs 1.5 hrs 1 hr
UNIT 3-Nucleus and the Endomembrane System Structure of the nucleus: Nuclear envelope, Lamina, Nuclear Pore Complex Packaging of DNA, Chromosomes Structure and function of the nucleolus	6 hrs 1.5 hrs 1 hr 0.5 hr
The Endomembrane system and the organelles involved: The Secretory, Endocytic and Lysosomal pathways, Ribosomes, ER, Golgi and Lysosomes	3 hrs
UNIT 4-Mitochondria and Cell Energetics Structure of Mitochondria, Pathways of Energy Production, ATP and its structure Cellular Respiration: Overview of Glycolysis, TCA cycle, Electron transport chain and Chemiosmotic coupling; Overall energy balance	5 hrs 2 hrs 3 hrs
UNIT 5-Chloroplast and Photosynthesis Structure of the chloroplast, Photosynthetic pigments and Photosystems Light dependent reactions: Cyclic & non cyclic electron transport, photophosphorylation Carbon Fixation: RubisCO, Calvin Cycle, Photorespiration, C3/C4/CAM plants	6hrs 1 hr 2.5 hrs 2.5 hrs
UNIT 6-Cytoskeleton and Cell Communication Structure and functions of microtubules, intermediate filaments and actin filaments	2 hrs
UNIT 7-Signal transduction General features of cell signaling and types of cell signaling. Signaling molecules and	2 hrs
cellular receptors Signal transduction and Cellular response	1 hr 1 hr

	7
UNIT 8-The Cell Cycle	4 hrs
Stages of the cell cycle: Events of the G1, S, G2 and M phases	1 hr
Cell cycle check points, Regulators of the cell cycle: Cyclins and CDKs	2 hrs
Active Learning exercise: Cancer and the cell cycle	1 hr
GENETICS	30 hrs
UNIT 1-Mendelian Genetics Mendel's study of heredity-Mendel's experiments, Symbols and terminology, dominance recessiveness; Principle of segregation, Monohybrid cross, Principles of Independent assortment - Dihybrid ratio, Trihybrid ratio, Application of Mendel's Principles-The Pun square method, the probability method and the chi-square test; Problems.	4 hrs
UNIT 2-Extension of Mendelism	6 hrs
Allelic variation and gene function-incomplete dominance and co-dominance;	
Multiple alleles, ABO blood type alleles in humans, Rh factor alleles in humans,	
Genotypic interaction-Epistasis, Pleiotropy, Problems, Extra nuclear inheritance-inheritan of plastid and kappa particles	nce
UNIT 3-Linkage and Crossing over	3 hrs
Introduction, detection of linkage, factors affecting recombination frequency, cytological	
basis of crossing over, crossing over in four strand stage, relation between chiasma and	
crossing over; Recombination frequency, Two point test cross and three point test cross.	
UNIT 4- Sex Determination, Sex Linkage and Pedigree Analysis	7 hrs
Sex determination in animals and plants; Dosage compensation- Proof of the Lyon	
hypothesis, dosage compensation in Drosophila; Sex linkage Pedigree analysis-Penetranc	e
and expressivity, family tree, dominant inheritance, recessive inheritance; Problems.	6 hrs
Active Learning: Sex linked genes in human beings-Hemophilia, colour blindness, the	
fragile X syndrome; Genes on X and Y chromosomes.	1 hr
UNIT 5- Population Genetics	2 hrs
Theory of Allele frequencies (Gene and genotypic frequencies)-The Hardy-Weinberg	
principle. Speciation-Definition of species and mode of speciation (allopatric, sympatric)	1 hr
Active Learning: Gene pool Application of the Hardy – Weinberg principle and	1 111
Exceptions-Natural selection Random genetic drift	1 hr
Exceptions-Natural selection, Random genetic unit.	1 111
UNIT 6- Chromosomal Aberrations	5 hrs
Numerical chromosomal aberrations– Euploidy, polyploidy. Aneuploidy- Trisomy,	
monosomy, nullisomy, disomy, tetrasomy; Structural chromosomal aberrations-	
Deletions and Duplication of chromosome segments; Rearrangement of chromosome	
structure - inversion, translocation.	4 hrs
Active Learning: Procedure to detect aneuploidy in human fetuses; Examples of	
aneuploid humans.	1 hr

Reference

Cell biology:

2015 Principles of Biology, Edition 2, Brooker, Widmaier, Graham and Stiling 2002. Essential Cell Biology-Alberts, Garland science, 1998.

2004 The Cell-A Molecular approach-Geoffrey M Cooper, ASM press, 1997. Genetics:

Principles of Genetics-Snustad, Simmons, third edition, Wiley 2003.

Principles of Genetics-Robert H Tamarin, seventh edition Tata Mcgraw Hill, 2002. Genetics-A.V.S.S. Sambamurty, Narosa, 1999

Genetics Principles and Analysis, Daniel L H, Elizabeth W Jones John and Burlett publishers, 1998.

Principles of Genetics-Gardner, eighth edition, 2002

Fundamentals of Genetics, B.D. Singh, Kalyani Publishers

PRACTICAL II-30 HRS

BTP 218: Techniques in Cell biology and Genetics

1. Staining of Buccal mucosa for Barr bodies.

2. Blood grouping.

3. Introduction to mitosis and study of mitotic chromosomes.

4. Introduction to meiosis and study of meiotic chromosomes.

5. Introduction to Micrometry and measurement of cells-Onion cells/yeast cells.

6. Introduction to Hemocytometry and counting of yeast cells.

7. Karyotyping of the human chromosomes.

8. Isolation of chloroplast.

9. Culturing techniques, identification and handling of Drosophila melanogaster.

10. Preparation and Staining of salivary gland chromosomes in Drosophila.

Semester	III SEMESTER
Paper code	BT 318
Paper Title	Molecular Biology and Biophysics (45 + 15 hrs)
Number of teaching hrs per week	4
Total number of teaching hrs per semester	60
Number of credits	4

This course deals with the fundamentals of Molecular Biology, gene expression and Biophysics. **Scope:** The Molecular Biology segment deals with basic concepts and introduces the discipline to the undergraduate student. It also provides the student a clearer understanding of the central dogma of molecular biology and methods of gene regulation. The practical sessions train the student in selected basic techniques in DNA isolation. The topic in Biophysics gives insights to the Physics, chemical and computational aspects used in applications for biological studies.

MOLECULAR BIOLOGY	45 hrs
UNIT 1: DNA Structure and function	6 hrs
Griffith's, Avery and Hershey - Chase experiments	1 hr
Active learning exercise: Analysis of data from classical experiments that led to the	
discovery of DNA structure	1 hr
The race to enumerate the structure of DNA,	
Watson and Crick's model of the DNA double helix	2 hrs
DNA Compaction and Structure of eukaryotic chromosomes/eukaryotic gene	2 hrs
UNIT 2: DNA Replication	8hrs
Semiconservative model of replication (Meselson & Stahl experiment),	
Bidirectionality and semi-discontinuous nature of replication	2 hrs
Replication fork and the main scheme of DNA replication	1 hr
Replication in Prokaryotes: Initiation, elongation and termination	2 hrs
Replication in Eukaryotes: Initiation, elongation and termination, telomeres, telomerase	2 hrs
Active learning exercise: PCR and molecular medicine	1 hr
UNIT 3: DNA Damage and repair	8 hrs
Radiation Damage, DNA instability, Oxidative damage, Alkylation Damage	2 hrs
Introduction to mutagens, types of mutagens (chemical, physical and biological)	1 hr
Active learning exercise: Mutations and Cancer	1 hr
Photoreactivation, Excision Repair, Mismatch repair and SOS response	2 hrs
Double stranded DNA breaks	2 hrs
UNIT 4. Cons synrossion. Transcription	8 hrs
Dromotors Conoral Transcription factors DNA binding domains	0 11 5 1 hr
Restorial Transcription Initiation, Elongation and Termination	$\frac{1}{2}$ hro
Eukaryotia DNA Polymerosas, Promotors, Eukaryotia Transcription Initiation	2 111 5
Elongation and Termination	2 hrs
Active learning exercise: Experimental techniques to study promoter activity	$\frac{2}{1}$ hr
Processing of aukaryotic mRNAs Capping Splicing and Polyadenylation	$\frac{1}{2}$ hrs
rocessing of cukaryouc mixtwas-capping, sphemig and roryadenyiation	2 m s

UNIT 5: Gene expression: Translation Structure of Ribosomes, Transfer RNA, Aminoacylation, mRNA and the Genetic Code Translation Initiation, Elongation and Termination in Prokaryotes Translation Initiation, Elongation and Termination in Eukaryotes Active learning exercise : Gene editing Post translational processing of proteins	8 hrs 2 hrs 2 hrs 2 hrs 2 hrs 1 hr 1 hr
UNIT 6: Gene regulation Concept of regulation, overview of gene regulation Prokaryotic Gene Regulation-Lac and Trp operons Eukaryotic Gene Regulation- Regulatory promoter elements, changes in chromatin structu and DNA methylation Active learning exercise: Designing a gene circuit RNA interference in gene regulation	7 hrs 1 hr 2 hrs ure 2 hrs 1 hr 1 hr
BIOPHYSICS	15 hrs
UNIT 1: Microscopy Principle, design, resolution, numerical aperture and magnification of compound microscop Principle and design of Phase contrast and Fluorescence microscope. Electron microscope- Principle and design of TEM and SEM. Specimen preparation for electron microscope.	5 hrs ope. 3 hrs 2 hrs
UNIT 2: Analytical techniques Principles and applications of: Chromatography (Paper, thin-layer, column, HPLC) Centrifugation (rpm and g, Ultracentrifugation)	4 hrs 3 hrs 1 hr
UNIT 3: Spectroscopic techniques Principles and applications of: UV, visible spectroscopy, X-ray crystallography	3 hrs
UNIT 4: Isotopes Introduction, Types, their importance in biological studies, measure of radioactivity, GM counters & Scintillation counting	3 hrs
Reference Molecular Biology: Genes to Proteins, Burton E Tropp, Fourth Edition Genomes 3.0, T.A Brown Principles of Biology, Brooker, Widmaier, Graham and Stiling Biophysics: Essentials of Biophysics: P. Narayanan, Biophysical Chemistry: Principles and Techniques: Upadhyay, Upadhyay and Nath	

Practical III- 30 hrs BTP318: Techniques in Genetic Engineering-I

- 1. Introduction to DNA Isolation and Discussion of Cheek cell DNA isolation (Protocol A)
- 2. Preparation of buffers and Cheek cell DNA Isolation
- 3. Agarose Gel electrophoresis
- 4. Presentation of DNA isolation protocol B by students groups and calculations
- 5. Calculations and preparation of buffers for protocol B
- 6. DNA isolation by student groups using Protocol B
- 7. Analysis/Comparison of DNA quality and concentration, Agarose gel electrophoresis
- 8. Understanding Protein Structure and SDS PAGE
- 9. Extraction of total protein from dal / lentil samples

10. SDS PAGE

Semester	IV SEMESTER
Paper code	BT 418
Paper Title	Biostatistics
Number of teaching hrs per week	2
Total number of teaching hrs per semester	30
Number of credits	2

This course paper is 30hrs of component in Biostatistics.

Scope: Data and statistics are an integral part of biology due to their necessity for appropriate experimental design, testing hypothesis, and drawing accurate inferences. This course will teach students foundational concepts allowing them to use Biostatistics for the above purposes. The lab component will give students hands-on experience in using software for statistical analyses.

BIOSTATISTICS

UNIT 1-Introduction

Definition of selected terms Scale of measurements, Methods of collecting data, Presentation of data statistical tables, Need for reduction of data.

UNIT 2 -Measures of Central Tendencies

Measures of averages and location: Mean, Median, Mode

UNIT 3 - Measures of Dispersion

Range, quartile deviation, Mean deviation, Variance & Standard deviation, Coefficient of Variance

UNIT 4 - Population and Sampling Techniques

Concepts of statistical population and sample need for sampling studies; Simple procedures of random sampling; Methods of sampling.

UNIT 5-Probability

Basic concepts; Basic theorems of probability addition and multiplication theorems; Conditional probability, Bayes Theorems; Probability distribution definition & applications; Binominal distribution and its application; Poisson distribution and its application; Normal distribution and its application.

UNIT 6 -Correlation and Regression

Correlation concept and applications; Regression concept and applications

UNIT 7-Hypothesis Testing

Logic of statistical standard error estimation testing of hypothesis; Tests of significance: Normal deviate tests (Z test); Student's "t" test; Chi-Squared test; F. test and analysis of variance; Statistics in Genetics

Reference

Principles of Biostatistics By Rosner Biostatistics by Khan and Khanum

2 hrs

5 hrs

5 hrs

3 hrs

6 hrs

3 hrs

6 hrs

12

Practical IV-30 Hrs BTP418: Biostatistics

1. Sampling, collecting, and documenting data

2. Visualization of data, relation between variables and plotting data by hand.

- 3. Introduction to software
- 4. Central tendencies and measures of dispersion
- 5. Basics of probability
- 6. Distributions I Normal distribution
- 7. Distributions II- Binomial and Poisson distribution
- 8. Correlation and Regression
- 9. Hypothesis testing, Student's t-test, Chi-squared test and ANOVA.
- 10. Integration of various methods and tools.

Semester	IV SEMESTER
Paper code	BT OE 418B
Paper Title	Biotechnology Now and Beyond (45 + 15 hrs)
Number of teaching hrs per week	2
Total number of teaching hrs per semester	30
Number of credits	2

The paper is offered by the department in the CBCS component for all students other than Life science combinations.

BIOTECHNOLOGY: NOW AND BEYOND	30 hrs
UNIT 1-The Cell:	2 hrs
Cell theory: The basic unit of life, structure of a cell (general, plant and animal)	1 hr
General account of living cells	1 hr
UNIT 2-DNA:	2 hrs
Discovery of DNA as a genetic material	1 hr
Structure of DNA	1 hr
UNIT 3- Genes and Genomes:	2 hrs
Gene concept, concept of genomes	1 hr
Model organism and their genomes	1 hr
UNIT 4- Applications of DNA studies:	4 hrs
In Agriculture, Environment, Food and forensics-	
UNIT 5- Genetic Engineering and Cloning:	4 hrs
Aim, scope and principles of genetic engineering	1 hr
GE Insulin	1 hr
Introduction to cloning –Example Dolly	2 hr
UNIT 6- Bioinformatics:	4 hrs
Databases	1 hr
Sequencing	2 hrs
Human genome project	1 hr
UNIT 7- Biotechnology in the media:	2 hrs
UNIT 8- Bioethics, Biosafety and IPR:	2 hrs
Social, Moral and Environmental ethics, Biosafety, Biosafety guidelines	1 hr
IPR and patent process	1 hr
UNIT 9- Genetically Modified Crops:	2 hrs
Introduction to BT cotton	1 hr
Bt Cotton scenario in India	1 hr
UNIT 10 - Pharmacovigilance - Pharmacovigilance in India	1 hr
Introduction to adverse drug reactions	1 hr
UNIT 11- Genetic diseases:	2 hrs
Introduction to common genetic disorders	1 hr
Genetic counseling and diagnostics	1 hr
Unit 12-Stem Cells biology:	2 hrs
Introduction to stem cells	1 hr
Applications and ethical issues	1 hr

Reference: Will be provided in class for each section.

Semester	V SEMESTER
Paper code	BT 5118
Paper Title	Immunology
Number of teaching hrs per week	3
Total number of teaching hrs per semester	45
Number of credits	3

This course deals with the fundamentals of Immunology. It familiarizes the student with basics of the human immune system and immune response.

Scope: This course is designed for undergraduate students of Biotechnology. It outlines the basics and builds into an in-depth understanding of both humoral and cellular immune responses. The practical sessions allow for hands-on training in immunological experiments.

UNIT 1-The Immune System:	5 hrs
Types of immunity-Innate and Acquired, Barriers involved in innate immunity - anatom	nic,
physiologic, phagocytic, inflammatory	1.5 hrs
Collaboration between innate and adaptive immunity	0.5 hr
Organs involved - Central lymphoid organs — bone marrow, thymus	1 hr
Peripheral lymphoid tissues — spleen, lymph nodes, GALT and MALT	2 hrs
UNIT 2-Immunoreactive Cells:	4 hrs
Introduction to Macrophages, Granulocytes, NK Cells	1 hr
T cells — Markers, Functions of T cell subsets — TH, CTLs — mode of action, TR. B cells — Markers, ontogeny, heterogeneity; Activation, B cell differentiation-	1 hr
Memory B cells, Plasma cells	2 hrs
UNIT 3-Antigens: Kinds of Antigens, Epitopes and paratopes, Factors affecting immunogenicity	2 hrs
UNIT 4-Immunoglobulins:	5 hrs
Elucidation of Immunoglobulin structure. Structure and functions of immunoglobulins-	U III S
IgA, IgM, IgD, IgG, IgE	3 hrs
Isotypes, Allotypes, Idiotypes, Ig Receptors	1 hr
Active learning-Description and raising of polyclonal and monoclonal antibodies	1 hr
UNIT 5-Immunogenes:	4 hrs
Germline vs Somatic mutation theory. Drver-Bennet experiments	1 hr
Tonegawa's experiment, Class switching	1 hr
Immunogene structure, Generation of antibody diversity- combinatorial, junctional	2 hrs
UNIT 6-Antigen-Antibody Interactions	2 hrs
Antigen and Antibody interactions — forces involved, affinity and avidity	1 hr
Active learning-Precipitation and Agglutination	1 hr

UNIT 7-Complement system: Description of trigger and proteins involved Classical pathway	3 hrs 1 hr 1 hr
MBL and Alternate pathway, terminal pathway	1 hr
UNIT 8-Major Histocompatibility Complex:	2 hrs
Structure of MHC I and MHC II molecules Cellular distribution of MHC molecules, role in immune responsiveness, disease	1 hr 1 hr
central distribution of white molecules, fore in minute responsiveness, discuse	1 111
UNIT 9-Antigen Processing and Presentation:	3 hrs
Self-restriction of T cells, Types and Function of Antigen Presenting cells	1 hr
Antigen Processing Pathways- Endocytic and Endogenous Processing Pathways	2 hrs
UNIT 10-Humoral Immunity:	4 hrs
Primary and secondary response, Role of immunoglobulins in immunity	1 hr
Theories of Antibody production—Instructive theory and Selective theory	1 hr
Somatic hypermutation, Affinity Maturation, Class Switch recombination	2 hrs
UNIT 11- Cell Mediated Immunity:	3 hrs
Mechanism of cell mediated toxicity, Perforin and Granzyme pathway	2 hrs
Death receptor ligand pathway, ADCC	1 hr
UNIT 12-Immunotolerance:	3 hrs
Central Tolerance, Peripheral tolerance, Tolerance induction	
UNIT 13- Hypersensitivity:	4 hrs
Characteristics and types	1 hr
Type I — Cells involved, Factors, Diagnosis, Treatment	1 hr
Type II - Types, reasons, Type III, Type IV	2 hrs
UNIT 14-Autoimmune Diseases:	1 hr
with an example	i factors,
Reference Immunology by Richard A. Goldsby, Thomas J. Kindt, Barbara A. Osborne & Janis Ku Immunology by Ivan M. Roitt, Jonathan Brostoff & David K. Male Immunology: Essential and Fundamental by Sulabha Pathak &Urmi Palan.	ıby

Immunology a comprehensive review: Darla J. Wise & Gordon R. Carter-Anebooks

Lecture notes in Immunology: Ian Todd & Gavin Spicket

Microbiology and Immunology: Monica Gandhi et.al. Blackwell publishing.

Schaum's Immunology: George R.Pinchuk

Essential Immunology: Viva books private Ltd

🗕 St.Joseph's College: Biotechnology UG Syllabus: 2018-21 🌆

Introduction to blood cells and preparation of blood smear-differential staining.
Immunodiffusions- SRID and Rocket immunoelectrophoresis

PRACTICAL V-30 hrs BTP 5118: Methods in Immunology

- 3. ODD titration and pattern
- 4. Virtual lab- B cell maturation
- 5. Immunohistochemistry
- 6. Agglutination tests- VDRL and WIDAL test
- 7. Enzyme linked immunosorbant assay (ELISA)
- 8. Isolation of IgG from eggs
- 9. Purification of IgG from eggs
- 10. SDS PAGE of IgG

Semester	V SEMESTER
Paper code	BT 5218
Paper Title	Genetic engineering and Bioinformatics (30+15 hrs)
Number of teaching hrs per week	3
Total number of teaching hrs per semester	45
Number of credits	3

Scope: This course gives the student a core understanding of principles and techniques of genetic engineering. In addition, it introduces the discipline of Bioinformatics and gives an understanding of the topics and techniques of bioinformatics commonly used by biologists. The practical component exposes students to a series of experiments involved in a simple genetic engineering task. The bioinformatics practical gives a hands-on experience of the commonly performed analysis of biological data.

GENETIC ENGINEERING

UNIT 1- Introduction

Principles of Recombinant DNA Technology & Genetic Engineering techniques (in brief), applications, goals, and ethical issues.

UNIT 2- General Methods of Transformation

Methodology, Advantages and Disadvantages of the following methods of transformation: Competence-Induction, Biolistics, Lipofection, Electroporation, Microinjection, Macroinjection, Silicon carbide fibre vortex, DNA co-precipitation, Sonication, Ultrasonication, Laser Induced, *Agrobacterium* mediated.

UNIT 3- Tools in Genetic Engineering	6 hrs
Restriction Endonucleases and restriction mapping	3 hrs
DNA ligase, Alkaline Phosphatase, Polynucleotide kinase, Terminal	
transferases, S1 nuclease, Linkers and Adapters,	
Polymerases-Klenow fragment, Pol I, Taq polymerase, Reverse transcriptase	3 hrs
UNIT 4-Vectors for cloning	11 hrs
Natural plasmids, PBR322 and PuC19: Design and Advantages.	2 hrs
Cloning Vectors based on bacterial plasmids	3 hrs
Scheme of cloning-restriction, ligation, Lambda Bacteriophages- Insertional vectors and	
Replacement vectors- features and design.	2 hrs
M13 Bacteriophage- features and designs	1 hr
Cosmids and Phagemids - definition, features, design with examples	1 hr
List of vectors for cloning in Yeasts (S. cerevesiae, P.pastoris)- features with examples	1 hr
YAC- features and designs	1 hr
UNIT 5- Techniques in cloning and gene analysis	3 hrs
PCR, Genomic libraries and cDNA libraries, Introduction to molecular markers.	
Active learning- Southern blotting	
UNIT 6- Techniques related to Genomes	5 hrs
Techniques of genome sequencing- Sanger, NGS, Nanopore	3 hrs
Applications of genomics	1 hr
Active learning- Genome editing by Crispr-Cas	1 hr

,

30 hrs

1 hr

4 hrs

– St.Joseph's College: Biotechnology UG Syllabus: 2018-21 🚛

19

UNIT 1- Introduction and applications

What is bioinformatics, connections to genes and genomes, applications in genomics, gene expression, protein structure, history of Bioinformatics

UNIT 2- Databases

BIOINFORMATICS

Gateway sites (NCBI, EMBL, DDBJ), concept and structure of a database, Examples- Genbank, Uniprot, NCBI Genomes, PDB

UNIT 3- Analysis of sequences

Similarity searching, global and local alignments; BLAST- concept and applications, algorithm (scoring matrices, penalties etc.), output and interpretation (E-value); Multiple Sequence Alignment (MSA)- concept and applications, CLUSTAL, output and interpretation

UNIT 4- Phylogenetic analysis

Concept of a phylogeny, connection between MSA and phylogenies (neighbor joining method), Active learning-basics of ancestral sequence/trait mapping

UNIT 5- Structure databases

Protein structure database (PDB)- data format, major features of protein structure, basic principles of docking, principles of homology modeling

UNIT 6- Literature search and Pubmed

Citations, references, and literature search. Pubmed

Reference:

Genetic Engineering:

Watson, J.D., Tooze, J. and Kurtz, D.T., Recombinant DNA: A short Course, Scientific American Books, New York.

T. A. Brown, Essential Molecular Biology a Practical Approach -Oxford University Press Bruce Alberts, Molecular Cell Biology Ernst L. Winnacker,

From Genes to Clones: Introduction to Gene technology Principles of Gene Manipulation and Introduction to Genetic Engineering, 3rd Ed

Purohit, S.S., Biotechnology Fundamentals and Application-Himalaya Publications. Glick & Pasternack, Molecular Biotechnology.

Bioinformatics:

Introduction to bioinformatics by Sundararajan and Balaji

Bioinformatics by Murthy

Developing Bioinformatics computer skills by Cynthia Gibas and Per Jambeck O'reilly Bioinformatics- concepts, skills, and applications, By S.C Rastogi, Namita Mendiratta and Parag Rastogi. CBS publisher

Introduction to Bioinformatics by Arthur M. Lesk. Oxford University Press Bioinformatics-sequence and genome analysis by David W. Mount. CSH Lab Press

15 hrs

1 hr

3 hrs

6 hrs

2 hrs

2 hrs

1 hr

Practical VI- 30 hrs BTP 5218: Techniques in Genetic Engineering II and Bioinformatics

1. Isolation of plasmid from an assigned organism

2.Single and double restriction digestion of the plasmid DNA (EcoR1, Hind III, BamHI) and its analysis by electrophoresis

3.Purification of an isolated fragment.

4.Amplification by PCR

5.Ligation of a fragment to a restricted vector

6.Preparation of competent cells

7.Transformation of ligated DNA

8.Bioinformatics- Genome Data Viewer, PubMed

9.Sequence analysis- BLAST and CLUSTAL Omega

10.Structure analysis tool- Rasmol

Semester	VI SEMESTER
Paper code	BT 6118
Paper Title	Entrepreneurship, Industrial and Medical Biotechnology
	(3+27 +15 hrs)
Number of teaching hrs per week	3
Total number of teaching hrs per semester	45
Number of credits	3

The course delves into the basic concepts of industrial biotechnology and medical biotechnology with a flavor of entrepreneurship towards these avenues.

Scope: The course introduces the students to microbial, enzyme and food biotechnology at the industry level. Medical biotechnology covers the epidemiological aspects of disease and the technological means to diagnose and treat them.

ENTERPRENEURSHIP

Introduction, Opportunity scouting, idea generation, business plan, developing a business model canvas

INDUSTRIAL BIOTECHNOLOGY	27 hrs
UNIT 1- Introduction: Introduction to Industrial Biotechnology, Basic principles of fermentation technology	1 hr
UNIT 2- Strain Improvement: Screening and Isolation of Microorganisms, Maintenance of strains, Improvement (Mutant selection, Recombinant DNA methods)	3 hrs
UNIT 3- Fermentation Media: Natural and Synthetic Media, Sterilization techniques – Heat, Radiation and Filtration me	2 hrs ethods
UNIT 4- Fermenters: Design of fermenters, Types of fermenters, Factors affecting fermentation-Aeration, Agitation, Temperature regulation, Mass transfer, Oxygen transfer and Filtration method	3 hrs
UNIT 5- Type of Fermentation: Solid State fermentation, submerged fermentation, batch fermentation, fed-batch fermentation, continuous fermentation, Immobilized enzyme and cell bioreactors.	2 hrs
UNIT 6-Process Development: Down Stream Processing (DSP)- Disruption of cells, Separation, Extraction, Strategies for concentration and Purification of products	3 hrs or
UNIT 7-Production of Microbial products: Brief account of the following products obtained by industrial productions Alcoholic Beverage–Beer Organic acid–Citric acid Antibiotic –Penicillin Amino acids–Glutamic acid Vitamin–B12	9 hrs hr each
St Jacoph's College, Biotophyslery UC Syllabus	. 7010 71

3 hrs

Fermented Foods – Yoghurt and Cheese Microbial Foods – Single cell proteins (SCP), Active learning-single cell oils (SCO) Polysaccharides-Xanthan gum Polyesters-Polyhydroxyalkanoates (PHA)

UNIT 8-Enzyme Biotechnology: Introduction to enzymes – examples of enzymes from animal, plant and microbial source Industrial uses of amylase enzyme	2 hrs
Introduction to bulk and fine enzymes Active learning- Steps involved in large scale production of enzymes	1 hr 1 hr.
UNIT 9-Plant tissue culture: Introduction-Totipotency, Phytohormones and its role in invitro propagation; basic lab requirements, Culture media	2 hrs 1 hr
Micropropagation - Collection, sterilization, preparation and inoculation of explants.	1 hr
MEDICAL BIOTECHNOLOGY	15 hrs
UNIT 1- Epidemiology: Introduction to epidemiological studies (terminology), Methods of disease transmission at disease cycles, reservoirs of infections, Portals of entry and exit of Pathogens Epidemiology of Polio	2 hrs nd
UNIT 2- Pathology: Normal human microbiota, microbial colonization, microbial virulence, toxins, hydrolytic enzymes, capsule, adherence factors, invasiveness	2 hrs
UNIT 3- Immunotechnology and Diagnostics: Principle: ELISA, Western Blotting, Immunoflourescence, flow cytometry, Assays: Proliferation assay (lymphocyte, MTT), Cell cytotoxicity, apoptosis	2 hrs
UNIT 4-Vaccines:	2 hrs
Introduction to vaccines, Active and Passive Immunization	1 hr
Types of vaccines, note on hybrid and conjugate vaccines	1 hr
UNIT 5-Transplantation Biology: Antigens involved in graft rejection, Allorecognition — Direct and indirect Graft rejection - Role of APCs, Effector cells, Graft Vs Host Disease (GVHD) Immunosuppressive therapies — Induction Therapy and Maintenance therapy	3 hrs 1 hr 1 hr 1 hr 1 hr
UNIT 6: Cancer Biology: Introduction, factors of predisposition, tumour classification, diagnosis (IHC) Treatment {Monoclonal Antibodies, Non-specific Immunotherapies, Oncolytic Virus Therapy, Active learning-T-cell therapy (CAR-T), and prevention (Cancer Vaccines)}	4 hrs

Reference:

Industrial Biotechnology:

Sullia S. B & Shantharam S: (1998) General Microbiology, Oxford & IBH Publishing Ltd. Bisen P.S (1994) Frontiers in Microbial Technology, 1st Edition, CBS Publishers

Glaser A.N & Nilaido. H (1995) Microbial Biotechnology, W.H Freeman & Co.

Prescott & Dunn (1987) Industrial Microbiology 4th Edition, CBS Publishers & Distributors

Prescott & Dunn (2002) Industrial Microbiology, Agrobios (India) Publishers

Crueger W. &Crueger A. (2000) A text of Industrial Microbiology, 2nd Edition, Panima Publishing Corp

Stanbury P.F, Whitaker H, Hall S.J (1997) Principles of Fermentation Technology, Aditya Books (P) Ltd

Medical Biotechnology

Patrick R Murray, Ken S Rosenthal and Michael A Pfaller (2016) Medical Mircrobiology. Elsevier

Prathiba Nallari and V Venugopal Rao (2010) Medical Biotechnology. Oxford University Press. Weinberg R A (2007) The Biology of Cancer. Garland Science

Practical VII- 30 hrs BTP 6118: Industrial Biotechnology

- 1. Preparation and maintenance of algal and fungal cultures.
- 2. Preparation of media for plant tissue culture, production of mushrooms
- 3. Inoculation and incubation of explants
- 4. Principle and handling of a bioreactor
- 5. Production of Wine and Estimation of alcohol by specific gravity method.
- 6. Isolation and culturing of microbes for antibiotic sensitivity test
- 7. Immobilization of yeast
- 8. Estimation of citric acid from Aspergillus niger
- 9. Estimation of Lactic acid and Lactose
- 10. Workshop/Industrial visit-Medical Biotechnology

Semester	VI SEMESTER
Paper code	BT 6218
Paper Title	Plant, Environmental and Animal Biotechnology (15+15+15
	hrs)
Number of teaching hrs per week	3
Total number of teaching hrs per semester	45
Number of credits	3

This course deals with the application of biotechnology in utilizing plants and animals for bettering human life. The course also introduces the concept of green environment technologies and an insight into the techniques of reclaiming lost air, soil and water health.

Scope: It aims to introduce and familiarize concepts, principles and practices in plant, animal and environmental biotechnology. The practical sessions encompass a project that would answer pertinent questions in the above fields. The exercise provides hands-on experience to formulate research problems, design and conduct experiments as well as draw scientific inferences from the results.

PLANT BIOTECHNOLOGY	15 hrs
Unit 1: Plants for Food, Fuel, Feed and Fibre	2 hrs
Statistics on population, food security etc., Challenges for Agriculture	1 hr
Impact of Biotechnology on Global Agriculture and Sustainability	1 hr
Unit 2: Generation of transgenic plants	3 hrs
Gene discovery and analysis, plant transformation vectors	1 hr
A transgenic construct: Promoters, terminators, selectable markers, reporter genes	1 hr
Transformation (Tobacco)	1 hr
Unit 3: Transgenic plants	6 hrs
Herbicide tolerant, Insect resistant and Abiotic stress tolerant transgenic crop plants:	
Strategies, Case studies	4 hrs
The GM crop debate: Safety, ethics, social perception & acceptance of GM crops	2 hrs
Unit 4: Molecular Pharming	2 hrs
Plants as host systems for molecular pharming of industrial proteins/ enzymes, therapeuti pharmaceutical proteins, edible vaccines etc. Case studies.	c/
Unit 5: Plant secondary metabolites	2 hrs
Classification and roles of plant secondary metabolites: terpenoids, alkaloids, flavonoids,	
glycosides, phenolics	1 hr
Active learning- Applications of secondary metabolites, Metabolic engineering	1 hr
ENVIRONMENTAL BIOTECHNOLOGY	15 hrs
Unit 1: Air, Water and soil health	2 hrs
Introduction: Physical, Chemical and biological properties of air, water and soil, Concept of cleaner bioprocesses, eco-efficiency. 5-R policy. Case studies from Bangalore	S

Unit 3: Bioremediation 3 hrs Introduction, Types (In situ, Ex situ), Techniques- Bioaugmentation, Biofilters, Bioreactors, Biostimulation, Bioventing, Composting. Examples of organisms used in Bioremediation **Unit 4: Sewage and wastewater treatment** 2 hrs Overview of sewage treatment processes, Levels of sewage treatment, Anoxic and aerobic secondary treatment processes. Case studies: Strain Improvement 2 hrs **Unit 5: Biocontrol (Biological insecticides)** NPV, Bacillus thuringiensis, B. sphaericus, Baculovirus **Unit 6: Clean energy** 2 hrs Biofuels: Bioethanol, Biogas, Active learning-Clean Energy Initiatives in Karnataka. **Unit 7: Biosensors** 2 hrs Introduction to environmental Biosensors: biosensors used in detection of heavy metals, nitrogen compounds, pesticides and herbicides ANIMAL BIOTECHNOLOGY 15 hrs **UNIT 1-Introduction to Cell Culture and Cell Lines:** 3 hrs Scope of animal tissue culture, Lab requirements for Aseptic conditions, Balanced Salt Solution, Culture Media-Natural media, Complex media, chemically defined media, Advantage and disadvantage of Serum in media, importance of media components, Explant isolation and culture, Primary culture, Secondary culture, Transformed cell lines, Continuous cell lines; Enzymatic and mechanical disaggregation of cells, Cryopreservation, Thawing. **UNIT 2-Concept of Transgene and Transgenics:** 5 hrs Concept of Transgene, Transgenic organism and clones 1 hr Transfection: Examples involving microinjection and use of Retroviral vectors 2 hrs Clone and Nuclear transfer (Dolly) 1 hr Animal models for studying diseases (Cancer as an example) 1 hr **UNIT 3-Expression of mammalian genes:** 6 hrs Vector, Gene construct, Promoters, Scorable and Selectable markers, Targeted gene transfer, Transgene integration-Gene disruption (Positive-Negative Selection) and Gene displacement, Detection of Transgene 2 hrs Transgenic Mice –expression of foreign genes, Knock out Mice concept and their application in research 2 hrs Transgenic Cattle, Transgenic Fish 1 hr Active learning-Prerequisites for setting up an animal house and bioethics 1 hr **UNIT 4-Production of Pharmaceuticals:** 1 hr Introduction, Strategies to optimize product yield, Downstream Processing, pharmacokinetics & pharmacodynamics, drug formulation, preclinical and clinical trials.

Methods (e-DNA, sequencing from environmental samples), Assessment of Biodiversity,

(Take any one product as an example)

Unit 2: Environmental genomics

Indicator species

25

Reference:

Plant biotechnology:

Plant Biotechnology- Adrian Slater, Nigel Scott and Mark Fowler, Oxford University Press Metabolic engineering of plant secondary metabolism, Verpoorte and Alferman, 2000

Environmental biotechnology:

Textbook of Environmental Biotechnology - P K Mohapatra

Environmental Biotechnology - Vallero Daniel

Environmental Biotechnology-New Approaches and Prospective Applications- Marian Petre **Animal biotechnology:**

Short Protocols in Molecular Biology, 4th Edn, Ed: Ausubel, Kingston, and Moore, 1999. Culture of Animal Cells: A Manual of Basic Technique, 4th Edn, by Ian Freshney, 2000. Molecular Biotechnology: Primrose.

Animal Cell biotechnology: R.E. Spier and J.B. Griffiths (1988), Academic press. Animal Biotechnology: Murray Moo-Young (1989), Pergamon Press, Oxford.

Practical VIII-30 hrs BTP6218: PROJECT LAB

Students are divided into small groups and do hands-on projects under the supervision of faculty members. Students plan and execute experiments. Projects are assessed as following:

Practical Internal Assessment:15 marksFinal exam15 marksProject presentation10 marksProject report10 marks