St. Joseph's College (Autonomous), Bangalore - 560027 Department of Botany

Semester I

BO 118 : Microbiology and Algae

Unit I	Microbiology:	2 hrs
	Historical account of microbiology, Brief contributions of Anton van	
	Leeuwenhoek, Louis Pasteur, Robert Koch, Edward Jenner and	
	Alexander Flemming.	
	Scope of Microbiology (unit I self study)	
Unit II	Viruses:	9 + 1 hrs
	General characteristics, classification based on genetic material;	
	Structure and multiplication of HIV, TMV.	
	Immunology:	
	Antigen-antibody reaction, T cell – B cell function, Innate and	
	acquired immune system, Monoclonal antibody – Hybridoma	
	technique, vaccines, hypersensitivity, autoimmunity.	
	Brief account of Viroids and prions. (self study)	
Unit III	Bacteria:	10 + 2
	General characteristics of bacteria.	hrs
	Physical and chemical structure of Gram positive and Gram negative	
	bacterial cell walls.	
	Structure of capsule, flagella, pili and endospore. (Ultrastructure of	
	flagella and endospore only)	
	Reproduction by binary fission. Genetic recombination by conjugation	
	(F+ and F-, Hfr types), Transduction (generalized and specialized types)	
	and Transformation. A brief account of transposons.	
	A brief account of importance of bacteria in agriculture, industry,	
	medicine and environment. (self study)	
Unit IV	Mycoplasma:	2 hrs
	General characteristics, structure, reproduction and its significance.	
Unit V	Cyanobacteria:	3 + 1 hrs
	General characters, Structure and reproduction of Anabaena, Scytonema,	
	Spirulina. Economic importance of Cyanobacteria. (self study)	

Unit VI	Diversity of Algae:	13 hrs
	Habitat, thallus organization and reproduction;	
	Life cycles in algae: Haplontic, diplontic, haplobiontic and	
	diplobiontic types	
Unit VII	Systematic position, structure and reproduction of the following forms:	15 hrs
	a) Volvox b) Hydrodictyon c) Spirogyra d) Chara	
	e) Vaucheria f) Sargassum g) Batrachospermum	
Unit VIII	Economic importance of algae(self study).	2 hrs

PRACTICALS

- Gram staining of bacteria (*Rhizobium*, *Lactobacillus*).
- Haemocytometry (yeast).
- Demonstration of motility in bacteria by hanging drop technique.
- Study of Cyanobacterial forms: Anabaena, Scytonema, Spirulina.
- Algae-Study of morphology and reproduction of forms studied in theory.
- Demonstration of Spirulina culture
- Study of algae in natural habitats.
- Submission of Scrap book related to self study.

REFERENCES

- Smith, G.M., 1955. Cryptogamic botany vol 1. Kogakusha company Ltd., Japan.
- Vashishta,B.R.,1976.Botany for degree students Part 1.Algae,S.Chand and company, New Delhi.
- Kumar, H.D., 1990. Introductory phycology East Western Press, New Delhi.
- Srivastava H.N 1998, Algae ,Pradeep publications, Jalandar
- Sundarajan, S. 1998 College Microbiology Vol 1, Vardhana publications, Bangalore.
- Pelezar, M.J.JR, Chan E.C.S and Krieg, N.R, 2005. Microbiology, Tata McGraw Hill pub.Co.Ltd, New Delhi.
- Chopra, G.L. 1973, text book of algae, S. Nagin and co. Jalandhar.
- Schlegel, H.G.1993, General Microbiology, VIIEd. Cambridge. Univ. Press, England.
- Volk and Wheeler ,1980,Basic Microbiology IV Ed.J.B.Lippincott company,Philadelphia.

- Benson, H.J. 1990, Microbiological Applications, a laboratory manual in general Microbiology, Wm. C. Brown Publishers
- Powar, C.B. and Daginawala, 1991. General microbiology vol. I&II, Himalaya publishing company, Mumbai.
- Bold and Wynee,1985. Introduction to algae- structure and reproduction. Prentice hall, India.
- Fritsch,F.E.1961. Structure and reproduction in algae, Vol.I and II, camridge University Press, London
- Trivedi, P.C. 2001. Algal biotechnology, Pointer publishers, Jaipur, India.
- Tortora G.J., Funke B.R.and Case, C.L. 1998, Microbiology an introduction, 6th Ed. Addison Wesley Longman, Inc. USA
- Dubey, R.C. and Maheshwari, D.K. 2007. A text book of Microbiology, S Chand and Company, New Delhi.

St. Joseph's College (Autonomous), Bangalore - 560027 Department of Botany Semester II

BO 218 : Fungi, Plant Pathology, Bryophytes and Anatomy

Unit I	Fungi	20 + 3
	General characteristics, habitat, structure and reproduction of fungi	hrs
	Outline of classification according to G.C.Ainsworth (1973)	
	Detailed study of morphology and reproduction of Stemonitis, Pythium,	
	Rhizopus, Peziza, Puccinia, Agaricus and Cercospora.	
	General account of Lichens (self study) and Mycorrhizae and their	
	significance	
	Economic importance of fungi (self study)	
Unit II	Plant pathology	6 + 1 hrs
	A general account of symptoms caused by viruses, bacteria,	
	Mycoplasma and fungi. Study of tomato leaf curl, citrus canker, sandal	
	spike, club root of crucifer, late blight of potato, smut of jowar, blast of	
	rice, red rot of sugarcane (Etiology, disease symptoms, vectors if any,	
	disease cycle and control measures only)	
Unit III	Bryophytes	14 + 1
	Distribution, general characters, alternation of generation and	hrs
	classification of Bryophytes. Morphology, anatomy and	
	reproduction of <i>Marchantia, Anthoceros, Funaria</i> (developmental details	
	not required).	
	Economic importance of Bryophytes (self study)	
Unit IV	Anatomy	11 + 4
	Meristems – Classification, theories of organization (Apical, Histogen,	hrs
	Tunica-Corpus) and cytohistological zonation.	
	Secretory tissues-types, structure and importance	
	Primary structure of root and stem (self study)	
	Secondary Growth of dicot stem and dicot root.	
	Anomalous secondary growth in stem of <i>Boerhaavia</i> and <i>Dracaena</i> .	
	Wood anatomy: Variation in wood structure: ring porous and	
	diffuse porous	
	Wood parenchyma; uniseriate and multiseriate rays, apotracheal and	

PRACTICALS:

- Study of Stemonitis, Pythium, Rhizopus, Peziza, Puccinia, Agaricus and Cercospora.
- Lichens, Mycorrhizae (Ecto, VAM only).
- Tomato leaf curl, citrus canker, sandal spike, club root, late blight, smut, blast, red rot diseases.
- Study of Marchantia ,Anthoceros and Funaria.
- Anatomy of dicot and monocot stem and root (both primary and secondary).
- Anomalous secondary growth in *Boerhaavia* and *Dracaena*
- Student's submission: 3 Herbarium sheets of diseased plants.
- **Activity**: Cultivation of Oyster/milky mushroom

REFERENCES:

- Dube H.C, 2015, An Introduction of Fungi, IV Edition, Scientific publishers, India.
- Mehrotra R.S & K.R.Aneja 1990. An introduction of Mycology.
- Vasishta B.R, 1981; Botany for degree students Part II Fungi.S.Chand company
- Srivastava, H.N(1993) Fungi, Predeep Publications, Allahabad
- Bilgrami K.S and Dube H.C.(1976).a text book of modern plant pathology. Vikas Publication House, New Delhi.
- Parihar, N.S.(1962), Bryophyta, Central book depot, Allahabad.
- Srivastava, H.N(1993), Bryophyta, Predeep Publications, Allahabad.
- Watson.E.V.(1971)The structure and life of Bryophytes, Hutchinson and Co., London.
- Fahn, A (1969) Plant Anatomy 2nd Edition, Wiley, New York.
- Easu, K (1979) Anatomy of seed plants. Wiley Eastern Ltd. New Delhi.
- Singh R.S(1984).Introduction to principles of plant pathology,Oxford and IBH Publication Co.Pvt.Ltd.New Delhi.
- Sundararajan.S(1993),College Botany Vol I & II.Himalaya Publishing company.Bangalore
- Alexopoulos, C.J., Mims, C.W and Blackwell, M.1996. Indroduction to mycology, Wiley eastern Ltd., New Delhi.
- Mehrotra R. S. And Aneja K. R.,1990. An introduction to Mycology, New age international publishers, New Delhi.

	ST.JOSEPH'S COLLEGE (AUTONOMOUS) BENGALURU- 560027 II B.Sc. Botany Semester – III BO-318: Pteridophytes, Gymnosperms and Paleobotany	60 hrs
	Pteridophytes	30 hrs
	General characteristics, distribution and affinities of Pteridophytes. <u>Classification (Smith-1955)</u>	2 + <u>1 hr</u>
Unit I	Systematic position, sporophytic structure, reproduction and lifecycle of <i>Psilotum</i> , <i>Lycopodium</i> , <i>Selaginella</i> , <i>Equisetum</i> , and <i>Marsilea</i> . (Development not required)	14 hrs
	Brief account of Stelar evolution, Heterospory and Seed habit. <u>Economic importance of Pteridophytes</u>	6 hrs + <u>1 hr</u>
	Study of fossil Pteridophytes : Rhynia, Lepidodendron and <u>Calamites</u>	4 + <u>2 hrs</u>
	Gymnosperms	15 hrs
	General characters and <u>classification by Sporne.</u> Salient features of Cycadales, Coniferales and Gnetales.	3 hrs + <u>1 hr</u>
Unit II	Details study of the structure and reproduction of a) <i>Pinus</i> b) <i>Gnetum</i> (Developmental details not required except male and female gametophytes)	10 hrs
	Economic importance of Gymnosperms	<u>1hr</u>
	Paleobotany	15 hrs
	Fossiliferous rocks and process of fossilization	2 hrs
	Types of fossils	2 hrs
	Geological time scale; Determination of age of fossil (Carbon dating)	1hr + <u>1 hr</u>
Unit III	Techniques of studying fossils.	3 hrs
	A brief account of fossil genera: a) Glossopteris b)Pentoxylon	4 hrs
	Application of Paleobotany in prospecting fossil fuels Contributions of Sahni.	1hr + <u>1 hr</u>
Practicals BO 3P1	 Study of morphology, anatomy and reproductive structures of Pteridophytes mentioned in the theory Study of <i>Pinus</i> - morphology, anatomy and reproductive structures Study of <i>Gnetum</i> - morphology, anatomy and reproductive structures 	

	Micropreparation: specimens from pteridophytes (Selaginella, Equisetum and Marsilea and gymnosperms (Pinus needle)	
	Study of fossil members (Pteridophytes and Common arrange) as montioned in the syllabora with the	
	Gymnosperms) as mentioned in the syllabus with the	
	help of slides/specimen	
	Fossiliferous rocks	
	The morphology of Pteridophtes by	
	K.R.Sporne, Hutchinsion Co., London	
	(1970).	
	 Pteridophytes by Rasheed, Vikas Publication, New Delhi. 	
	 Cryptogamic Botany Vol. II McGraw – Hill, New York. 	
	 The morphology of Pteridophytes by N.S.Parihar. Central Book Depot, Allahabad. 	
	 Morphology of vascular plants (lower groups) by 	
	Eames, A.J.1936. McGraw Hill, New York.	
	 Studies in Paleobotany, Andrews, H.N. 1961. John Wiley, New York. 	
	Andrews H.N. 1961 Studies in Paleobotany. John	
	Wiley & Sons New York.	
D 6	Baja Y.P.S. (ed) 1989. Biotechnology in	
References	Agriculture and Forestry Vol. 5. Trees II. Springer – Verlag, Berlin, Heidelberg.	
	• Chamberlain C.J. 1935. Gymnosperms.	
	Structure and evolution. Univ, Chicago Press,	
	Chikcago.	
	• Coulter, J.M. & Chamberlain C.J. 1917	
	Morphology of Gymnospers. Univ Chicago Press,	
	Chicago.	
	Bhatnagar S.P. and AlokMitra 1966 Gymnosperms. Navy aga International (D) Ltd. Publishers.	
	New age International (P) Ltd. Publishers.	
	• Sporne K.R. 1974 The Morphology of	
	Gymnosperms. Hutchinson Univ. Lib. London.	
	Shripad N. Agashe 1995 – Paleobotany. Oxford and A R. H. N. B. H. C.	
	I.B.H. New Delhi.	
	Dutta S.C. 1966 An Introduction to Gymnosperms.	
	Asia Publications House, Mumbai.	

NOTE:

Portions which are underlined are meant for self-study

	T	T
	ST.JOSEPH'S COLLEGE (AUTONOMOUS)	
	BENGALURU- 560027 II B.Sc. BOTANY	
	SEMESTER – IV	
	BO-418: Embryology of Angiosperms,	30 hrs
	Palynology and Environmental Biology	30 ms
	Embryology of Angiosperms	15 hrs
	Introduction	
TImi4 T	Development and structure of anther	3 hrs + <u>1</u>
Unit I	Types of microspore tetrads, pollinia	<u>hr</u>
	Development of male gametophyte	
	Ovule and structure of an anatropous ovule.	
	Types of Ovule.	
	a) Unitegmic, Bitegmic and Ategmic ovules	
Unit II	b) Crassinucellate and Tenuinucellate ovules	3 hrs
	c) Orthotropus, Anatropous, Hemitropous, Campylotropous,	
	Amphitropous and Circinotropous	
	Variations in ovule structure- Aril, integumentary tapetum, caruncle	
	Types of Embryo sac development:	
Unit III	(Monosporic-Polygonum type; Bisporic-Allium type and Tetrasporic-	3hrs
	Fritillaria type.	
	Double Fertilization, process and its significance	
Unit IV	<u>Differences between mature Dicot and Monocot embryos</u>	<u>1 hr</u> + 1 hr
Omt 1 v	Types of Endosperm: i) Nuclear ii) Cellular iii) Helobial	<u> </u>
	In vitro morphogenesis:	
Unit V	Embryogenesis and Organogenesis	3 hrs
	Organ culture: Anther and embryo culture	
	Palynology	3 hrs
	Pollen morphology: Apertures, exine stratification and	
Unit VI	Ornamentation.	3 hrs
	Applications of Palynology	
	Environmental Biology	12 hrs
	Ecology: Introduction, sub-divisions and scope	
	Ecological factors: Abiotic and biotic factors	
Unit VII	Abiotic factors:	
	a) Climatic factors - temperature and light.	
	b) Soil profile	6 hrs
	c) Edaphic factors and its effect on vegetation- soil water, soil	0 1115
	microbes, and soil pH	
	Biotic factors / Interspecific interactions- (definition with examples)	
	Positive interactions	
	a) Mutualism (<i>Rhizobium</i> , Lichens and Mycorrhiza)	

	b) Commensalism (Epiphytes and Lianas).	
	c) Protocooperation (Bacteria)	
	Negative interactions	
	d) Parasitism (Cuscuta, Rafflesia, Viscum and Santalum)	
	e) Allelopathy (<i>Eucalyptus</i>)	
	Ecosystem: definition, components, food chain, food web and	
IImit VIII	ecological pyramids.	4 hrs
Unit VIII	Types of ecosystems: Pond and tropical rain forest ecosystem.	4 III'S
	Ecological succession: Hydrosere and xerosere	
	Global environmental issues: Acid rain, Greenhouse effect & global	
Unit IX	warming and Ozone layer depletion, Eutrophication, Impact of	<u> 2 hrs</u>
	pollution.	
	<u></u>	
	T.S of young and mature anther	
	 Whole mounts of pollen grains of – Grass, Cocos nucifera, 	
	Hibiscus, Mimosa, Acacia, Tridax, Eucalyptus and Pollinia of	
	Calotropis	
	Germination of Pollen grains of <i>Catharanthus roseus</i> –	
	Hanging Drop method	
	Types of ovules	
	• Types of placentation	
	Mounting of endosperm of <i>Cucumis</i>	
Practicals	• Mounting of embryo of <i>Tridax</i>	
BO 4P1	Study of morphological and anatomical features of :	
	Halophytes b) Hydrophytes c) Xerophytes	
	d) Parasites e) Epiphytes	
	 Estimation of chloride in water samples using Harvey's 	
	method	
	 Estimation of dissolved oxygen in water samples using 	
	Winkler's method	
	Bhojwani& Bhatnagar S.P. 1992: The Embryology	
	of angiosperms, Vikas Publication House, New	
	Delhi.	
	• Johri, B.M.(Ed) 1984: Embryology of angiosperms.	
	Springier Verlag, Berlin.	
	• Maheshwari P. 1950 : An Introduction to the embryology	
References	of angisperms – Tata McGraw Hill, New Delhi.	
	• Razdan M.K. 1993: An Introduction to plant tissue	
	culture. Oxford and IBH Delhi.	
	• Erdtman, G. (1969) Handbook of Playnology. Hafner Pub.	
	Co. New York.	
	• Agashe S.N. (2006) Palynology and its application. Oxford	
	and I B H Pub. Co. Pvt. Ltd.	
	• Gregory, P.H. (1973) The Microbiology of the Atmosphere.	

- Ogden, Raynor, Hayes, Lewis and Haines (1974). Manual for sampling Air borne pollen. Hafner Press (A division of Macmillan Publ. Co. inc. New York, London)
- Sharma P.D. 1999 Ecology and Environment. Rastogi Publications.
- Kumar H.D. 1955 Modern Concepts of Ecology. Vikas Publishing House, Private Limited.
- Odum, E.P. 1970 Fundamentals of Ecology
- Purohit S.S. 2002 Ecology, Environment and Pollution.
- Jogadand Environmental Biotechnology.
- Agashe, S.N. (1995) Paleobotany. Oxford and I B H Pub. Co. Pvt. Ltd.

NOTE:

Portions which are underlined are meant for self-study

	ST.JOSEPH'S COLLEGE (AUTONOMOUS) BENGALURU- 560027 II Year Undergraduate Course Semester – IV CBCS – Interdepartmental Elective BO OE-4118: Applied Botany	30 hrs
Unit I	Plants that heal/ Home remedies: Botanical name, brief description of part used and uses of the following plants as medicine — Tulsi, <i>Aloe vera</i> , Mint, Coleus, Hibiscus, Ginger, Garlic, Turmeric, Pepper, Fenugreek, Ajwain, Drumstick, Lady's finger, Papaya.	6 hrs
Unit II	 Economic Botany: Botanical name, brief description of part used and uses of the following plants: (a) Oil yielding plants- Neem, Sunflower, Castor, Olive, Coconut, Eucalyptus, Sandal wood, Lemon grass. (b) Beverages- Coffee, Tea, Cocoa. (c) Spices & Condiments- Asafoetida, Cinnamon, Clove, Saffron, Cardamom. 	6 hrs
Unit III	Home Gardening: Landscaping, Terrace gardening, Vertical gardening. Vermicomposting, Compost preparation using kitchen waste & leaf debris, Potting, Seeding, Manuring and Irrigation.	5 hrs
Unit IV	Mushroom Cultivation Introduction, nutritional and medicinal value of edible mushrooms. Poisonous mushrooms. Cultivation: mushroom spawn and process of grain spawn production. Mushroom farm layout. Steps in cultivation of oyster mushrooms (preparation of substrate, spawning, spawn running, cropping and harvesting). White button mushroom cultivation (substrate compositions, substrate preparation: outdoor and indoor composting, filling the compost, pasteurizing, spawning, spawn running, casing, cropping and harvesting). Processing and storage practices of mushrooms. Pests and disease control	13 hrs
References	 Dubey, R.C., 2005 A Text book of Biotechnology S.Chand& Co, New Delhi. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi. John JothiPrakash, E. 2004. Outlines of Plant Biotechnology.Emkay -Publication, New Delhi. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers. 	

- SubhaRao, N.S. 2000, Soil Microbiology, Oxford & IBH Publishers, New _Delhi.
- Vayas, S. C, Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic Farming AktaPrakashan
- Bahl, N. 1988. Handbook of Mushroom.Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi 37
- Krishnamoorthy, A.S., Marimuthu, T. and Nakkern, S. 2005
 Mushroom Biotechnology .TNAU Press, Coimbatore, India
- Harander, S. 1991. Mushrooms. The Art of Cultivation Sterling Publishers.
- Tripathi, D.P. 2005. Mushroom Cultivation.Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.

St. Joseph's College Autonomous, Bangalore – 560 027 III B.Sc. – BOTANY COURSE Semester V

BO 5118: Taxonomy of Angiosperms (45 hrs)

COURSE OBJECTIVES:

- To understand the basic principles of flowering plants focusing on classification and identification of unknown specimens.
- To appreciate the economic importance of flowering plants.

STUDENT LEARNING OUTCOME:

Upon successful completion of this course, students will be able to:

- Learn plant morphological terminologies and use it accurately in the description and identification of plant species.
- Identify and provide family characteristics of at least 20 flowering plant families in Bengaluru.
- Identify and/or verify unknown species using dichotomous keys.
- Learn how to collect and preserve plant specimens.
- Understand plant names and acquire a good overview of flowering plant evolutionary history.

IIISt	ory.	
Unit I	Introduction & Principles of taxonomy: Description - The plant body - Root, stem and leaves: types and their modifications. Inflorescence types, flower- parts and their arrangements, fruit-types; Identification, Nomenclature, Classification (phylogeny of Angiosperms, its significance).	5hrs
Unit II	Herbarium technique, herbaria, Botanical gardens and their importance. <u>Contributions of Carl Linnaeus and Indian Taxonomists (E.K. Janaki Ammal & Fr. Cecil J Saldanha).</u> <u>Botanical Survey of India(Self study)</u> . Outline classification of Bentham and Hooker's system, Engler and Prantl's system ("Syllabus der Pflanzenfamilien", ed. Melchior, 1964), An introduction to APG System of classification.	3+2 hrs
Unit III	Principles and rules (ICN); ranks and names; binominal system, typification,	2 hrs
Unit IV	Modern systematics – Need for a synthetic approach, role of Palynology, phytochemistry and serology, DNA barcoding.	3 hrs
Unit V	Vegetative and floral characters of flowering plants used in taxonomy in the description of families. Salient features of the families given below – (according to Engler & Prantl "Syllabus der Pflanzenfamilien", ed. Melchior, 1964). Dicotyledon families: Magnoliaceae, Moraceae, <i>Brassicaceae</i> , Malvaceae, Fabaceae, Caesalpiniaceae, Mimosaceae, Rutaceae,	26+4 hrs

	Euphorbiaceae, Apiaceae, Apocynaceae, Asclepiadaceae,	
	Solanaceae, Lamiaceae, Acanthaceae, Rubiaceae, Cucurbitaceae	
	and Asteraceae.	
	Monocotyledon families: Poaceae, Liliaceae, <i>Cannaceae</i> ,	
	Musaceae and Orchidaceae.	
	Brief economic uses of the members of the above mentioned	
	families	
Practicals	BO 5P1	
	Detailed studies of the following families with locally	
	available plant specimens.	
	1. Magnoliaceae, Moraceae, Brassicaceae	
	2. Fabaceae, Caesalpiniaceae, Mimosaceae	
	3. Malvaceae, Rutaceae, Euphorbiaceae,	
	4. Apiaceae, Apocynaceae, Asclepiadaceae	
	5. Solanaceae, Lamiaceae, Acanthaceae	
	6. Rubiaceae, Cucurbitaceae, Asteraceae	
	7. Poaceae, Liliaceae, Orchidaceae	
	8. Musaceae and Cannaceae	
	Economic Botany:Common name, botanical name, family	
	to which they belong, morphology of the part being used	
	and uses of	
	9. a) Cereals and Millets: Rice, Wheat, Jowar, Ragi	
	b) Pulses: Black gram, Bengal gram, Green gram	
	c) Spices: Cardamom, Clove, Cinnamon.	
	d) Fibres: Cotton, Coir and Jute	
	10.e) Paper and Pulp: Eucalyptus and Bamboo	
	f) Sugar: Cane Sugar	
	g) Beverages: Coffee and Tea	
	h) Medicinal plants: Neem, Sarpagandha and Periwinkle.	
	Submission of five economically important plant products.	
	Preparation and submission of FIVE herbarium specimens	
	and FIVE digital herbarium specimens (Soft copy).	
	Local field trip for studying plants and plant specimen	
	collection.	

References

- •Ashok Bendre and Ashok Kumar (1980) Economic Botany. Rastogi and Publications, Meerut.
- Heywood V.H. (1967) Plant Taxonomy. Edward Arnold, London.
- Hill A.F. (1982) Economic Botany. McGraw Hill, New York.
- •Jeffrey C. (1968) An introduction to plant taxonomy, London.
- •Lawrence, F.H.M. (1969) Taxonomy of vascular plants. Oxford & IBH Publications, New Delhi.
- •Singh and Jain, D.K. (1989) Taxonomy of angiosperms. Rastogi and Publications, Meerut.
- •Sundararajan, S. (2000) College Botany Vol. III. Himalayan Publishing House, Mumbai.
- •Sivarajan, V.V. (1982) Introduction to principles of plant taxonomy. Oxford & IBH Publications, New Delhi.
- •B.S.Sharma and B.B. Trivedi (1978) Introductory taxonomy. L B Publications.
- •Gurcharan Singh (2019) Plant Systematics: An Integrated Approach, IV Edition.CRC Press,
- •Simpson, M.G. (2019) Plant Systematics, 3rd Edition. Academic Press, USA.
- •Harris, J.G. and Harris, M.W. (2001) Plant identification terminology: An illustrated glossary Second Edition. Spring Lake Publishing, Spring Lake, Utah.
- •Beentje, H. (2010)The Kew Plant Glossary: an illustrated dictionary of plant terms. Royal Botanic Gardens, Kew,UK.
- •Bell, A. D. (1991) Plant Form: An Illustrated Guide to Flowering Plant Morphology. Oxford University Press, Oxford.

ST. JOSEPH'S COLLEGE AUTONOMOUS, BANGALORE- 560 027

III B.Sc. BOTANY, SEMESTER – V

BO-5218 : Molecular Biology and Plant Biotechnology (45 hrs)

COURSE OBJECTIVES:

- To understand the basic principles of molecular biology and plant biotechnology.
- To apply the concepts of molecular biology and plant biotechnology to the field of plant sciences.

STUDENT LEARNING OUTCOME:

Upon successful completion of this course, students will be able to:

- Utilize the tools & techniques learnt in plant biotechnology.
- Apply the concepts of molecular biology in research.

Unit I	Molecular Biology:	12 hrs
	a) DNA as genetic material (Griffith's experiment; Avery, McLeod and	+3hrs
	McCarty experiment, Hershey Chase experiment, (Self study));	
	b) Chemical nature of nucleic acids: Nucleosides and nucleotides, purines,	
	pyrimidines and chemical modifications (Structures).	
	c) Watson & Crick model of DNA, forms of DNA (A, B and Z) and	
	functions.	
	DNA replication – models (conservative, dispersive and semiconservative)	
	<u>Meselson and Stahl's experiment</u> (self study), Mechanisms of DNA replication in Prokaryotes.	
	d) RNA: types of RNA (Coding & non-coding), structure and function.	
	e) Central dogma of molecular biology; Genetic code – characteristics & wobble hypothesis,	
	f) Protein synthesis in Prokaryotes – Mechanism of Transcription & Translation.	
	g) Prokaryotic gene regulation: inducible (Lac Operon) and repressible	
	operon systems. Eukaryotic gene regulation (GAL4 model)	
Unit II	Plant biotechnology:	12 hrs
	Steps in cloning & raising transgenic plants: DNA isolation, amplification (PCR and Agarose Gel electrophoresis), cloning into vectors (using tools	
	such as Restriction endonucleases, Ligases, Plant Binary Vectors	
	(pCambia)), validation of cloning by Sanger's sequencing. <i>Agrobacterium</i> mediated transformation (<i>Arabidopsis</i> floral dip method).	
Unit III	Brief concepts of Agrobiodiversity, Antiterminator, Biopesticide,	9 hrs
	Bioremediation, Bioprospecting, Germplasm, in situ conservation, Synthetic seeds.	+1 hr
	A brief account of Golden Rice, Flavr Savr Tomato and Bt Cotton.	
	Molecular pharming; production of secondary metabolites in plants	
	(alkaloids and flavonoids with 2 examples each).	
	Edible plant vaccines (Self study).	

Unit IV	Biological nitrogen fixation in non-leguminous plants Production of drought, salinity and disease resistant plants Achievements of Indian institutes in developing commercially important transgenic plants with respect to Rice & Coconut. (Self study)	4 hrs +2hrs
Unit V	Intellectual property rights (IPR) – patenting; biosafety and biohazards	2 hrs
Practicals	BO 5P2 1. Qualitative tests for secondary metabolites (Alkaloids, Phenolics, Saponins, Anthocyanins, and Flavonoids) 2. Estimation of DNA by DPA method 3. Extraction and estimation of proteins by Lowry Lopez method 4. Determination of ascorbic acid content of plant sample 5. Extraction and estimation of total phenolics from plant samples 6. Isolation of genomic DNA from plant samples (Cauliflower/ pea shoot tip/ onion root tip) by CTAB method and 7. Separation of DNA (of experiment no. 6) by AGE. 8. Enzyme assays (oxidases and peroxidases) 9. Spotters (PCR, AGE, Southern blot, pUC18, Ti plasmid, pBR322) 10. Problems on Gene mapping – reconstructing the sequence	
References	 Brown T. A., 1990. Gene cloning: An introduction, 2nd ed., Chapman & Hall. Brown T. A., 2010. Gene cloning and DNA analysis, 6th edition, Wiley and Blackwell publishers. David J. Merrell, 1962. Evolution and Genetics. The modern theory of Evolution. Publishers: Holt, Rinehart and Winston, New York. Freifelder D., 1987. Molecular Biology, 2nd edition. Jones and Bartlett publishers, Boston. Grierson D. and Covey S. N., 1988. Plant Molecular Biology, 2nd edition, Blackie, Chapman and Hall, New York, USA. Halford N. G., 2006. Plant Biotechnology: current and future applications of genetically modified crops. John Wiley Publishers. Jha A. P., 1993. Genes and Evolution. MacMillan India Ltd. Kahl A. and Schell J. S., 1982. Molecular Biology of plant tumour, Academic Press, New York. Lewin, B., 2000. Genes VIII, Pearson Prentice Hall Malacinski GM & Freifelder D., 1998. Essentials of Molecular Biology, Jones & Bartlett Publishers. Perry Gustafson J., Ledyard Stebbins G., Francisco J. Ayala- Genetics, Development and evolution - 17th Stadler Genetics Symposium - Ed. Plenum Press New York and London. (1986) Sinha U. and Sunita Sinha., 1985. Cytogenetics, Plant breeding and Evolution. Vikas Publications Private Ltd. Strickberger., 1990. Evolution. Jones and Bartlett Publishers, Boston, 	

	London.	
	London.	
•	Verma and Agarwal., 1998. Cell Biology, Genetics, Molecular	
	Biology, Evolution and Ecology - S. Chand and Company Ltd.	

	ST. JOSEPH'S COLLEGE, (AUTONOMOUS) BENGALURU - 560027 III B.Sc., BOTANY COURSE SEMESTER – VI BO-6118: PLANT PHYSIOLOGY AND PHYTOCHEMISTRY	(45Hrs)
	 COURSE OBJECTIVES: To understand the role of water, light and other environmental factors in plant growth and development. To know about absorption, translocation and utilization of water and other minerals. To understand the concept of photosynthesis, respiration and the energy flow and various metabolic cycles with their integration. To understand changes during growth process (germination to flowering and to abscission). STUDENT LEARNING OUTCOME: The student will be able to explain the water and solute transport processes in plants. To explain the importance of photosynthesis and respiration in plants. To explain the role of light and plant hormones in plant growth and development. 	
	Water relations of plants: Diffusion, osmosis, imbibition, plasmolysis, water potential and its components.	2 hrs
Unit I	Absorption of water and ascent of sap: The mechanism of water absorption, factors affecting the rate of water absorption. Ascent of sap: Pulsation theory of J.C. Bose and Transpiration pull and cohesion-tension theory of Dixon and Jolly.	2+ <u>1</u> hrs
	Transpiration: Stomatal opening and closing mechanism: K+ ion theory, factors influencing transpiration, antitranspirants and guttation.	2+ <u>1</u> hrs
Unit II	Mineral nutrition of plants: Mineral elements in plants. The essential elements and their functions, symptoms of deficiency, ion antagonism; hydroponics, aeroponics and foliar nutrition. Absorption of mineral salts: Ion uptake mechanism, factors affecting mineral uptake, ion channels.	3+ <u>1</u> hrs

Unit III	Phloem transport: Transport of organic solutes (use of radioactive isotopes, tracer, and autoradiography), vein loading and unloading; transport mechanism (protoplasmic streaming hypothesis, Mass flow hypothesis). Factors affecting phloem transport.	4 hrs
Unit IV	Photosynthesis: Bioenergetics – Laws of thermodynamics, structure of chloroplast and Ultrastructure of thylakoid membrane, principles of light absorption, photosystems I and II. Photosynthetic electron transfer and photophosphorylation, mechanism of ATP synthesis (Chemiosmotic hypothesis), mechanisms of carbon fixation and carbohydrate synthesis, C3 cycle, C4 pathway, CAM pathway. Factors affecting the rate of photosynthesis and Blackmann's law of limiting factors. Photorespiration: Mechanism, organelles involved and significance	10+ <u>1</u> hrs
Unit V	Respiration: Ultrastructure of cristae, Respiratory Quotient, Glycolysis, TCA cycle, ETS and Oxidative phosphorylation, anaerobic respiration (Alcoholic fermentation), Pentose phosphate pathway – significance.	8 hrs

	Factors affecting the rate of respiration.	
Unit VI	Plant growth and photobiology:	8+ <u>2</u> hrs
	<u>Definition of growth and sigmoid growth curve.</u> Growth regulators	
	– Auxins, Gibberellins, Cytokinins, Abscisic acid and Ethylene. Role	
	of plant hormones in growth and development.	
	Plant movements.	
	Dormancy, seed viability and germination.	
	Phytochrome and its role in growth and development, Photoperiodism,	
	vernalization, ABC Model, Florigen concept and Biological clocks.	

Practicals	BO 6P1
	 Cytoplasmic streaming under different temperatures. Observation of plasmolysis and determination of osmotic potential
	by plasmolytic method
	3. Study of stomatal types and determination of Stomatal Index in
	monocot and dicot leaves
	4. Setting up of Solution culture/ hydroponics for demonstration of deficiency syndrome
	5. To study the effect of temperature on membrane permeability.
	Extraction of phloem sap and estimation of the constituents
	6. Separation of photosynthetic pigments by paper chromatography and finding their Rf values
	7. Effect of different wave lengths of light and CO ₂ concentration on
	photosynthesis
	8. Estimation of fructose in different fruits
	9. Estimation of Leghaemoglobin
	10. Instruments as spotters (Clinostat, Arc auxanometer, Ganong's
	potometer, suction force by thistle funnel, Ganong's respirometer)
	11. Estimation of total chlorophyll by spectrophotometer method
Reference s	Salisbury F.B. and Ross C.W. 1986. Plant Physiology.CBS Pub. New Delhi.
	Srivastava, H. N, (2007).Plant Physiology, Rastogi Publications Mukherji, S. and Gupta A. K,(2005). Plant physiology. New Central
	Book Agency, New delhi.
	Dey, P.M., & Horborne, J.N., 1977. Plant Biochemistry, Academic
	Press, New York
	Goodwin & Mercep., 1993. Introduction to plant biochemistry, Pergamon Press, New York.
	Hall, D.O., & Rao, K.K., 1999. Photosynthesis 6 th ed., Published in
	association with the Institute of Biology, Cambridge University Press.
	Moore, T.C., 1989. Biochemistry and Physiology of Plant hormones,
	Narosa Pub. House, New Delhi.
	Singh, B.N., & Mengel, K., 1995. Plant physiology and biochemistry,
	Panima Pub. Corporation, New Delhi.
	Singal, G.S., Genger, G.C., Sopory, S.K., Irrgang, K.D., & Govindjee, 1999. Concepts in photobiology, photosynthesis and
	photomorphogenesis, Narosa Pub. House, New Delhi.
	Stumpf, P.K., & Conn, E., (eds) 1988. The biochemistry of plants - A comprehensive treatise, Academic Press, New York.

ST.JOSEPH'S COLLEGE, (AUTONOMOUS), BANGALORE- 560027 III B.SC. BOTANY COURSE SEMESTER – VI

BO-6218: Cytology, Genetics, Plant breeding & Propagation

(45 hrs)

COURSE OBJECTIVES:

- To understand the cell cycle, its regulations and detailed structure of nucleus of plant cell and its components.
- To understand the principles of genetics and their deviations.
- To understand the methods and techniques in plant breeding & propagation

STUDENT LEARNING OUTCOME:

Upon successful completion of this course, students will be able to:

- Apply the principles of genetics in research fields.
- Apply the different methodologies to propagate plants naturally and artificially.

	CYTOLOGY (18hrs)	
Unit I	Cell cycle and its regulation, Mitosis & Meiosis.	7hrs
	Chromosomes: General Structure, types of chromosomes based on	+2hrs
	position and number of centromeres. Concept of heterochromatin	
	and euchromatin; Karyotype definition and procedure. Idiogram.	
	Techniques to study chromosomes – Types of staining, chromosome	
	painting, FISH.	
	Special chromosomes –Polytene and B Chromosomes in plants and	
	its significance (Self study)	0.1
Unit II	Types of mutations. Physical and Chemical mutagens.	9 hrs
	Chromosomal aberrations and their cytological and evolutionary	
	significance:	
	 Numerical aberrations – euploidy and aneuploidy 	
	• Structural aberrations – deletion, duplication, inversion and	
	translocation	
	GENETICS (18 hrs)	1
UNIT III	Introduction to genetics, Mendel's experimental work, Monohybrid,	2 hrs
	dihybrid and test cross, Mendel's laws of inheritance.	
	Deviations from Mendelian principles-	2 hrs
	Incomplete dominance, co-dominance and lethal genes	
	Concept of epigenetics	
	Intergenic interactions - Supplementary and complementary genes.	5 hrs
	Epistasis (dominant epistasis only), multiple factor and polymeric	
	genes (plant examples only). Genetic problems based on gene	
	interactions.	
	Linkage - concept, types and discovery of linkage.	3 hrs
	Crossing over - concept, types, significance and process of crossing	
	over.	
	Genetic mapping in maize. (Three point test cross)	2 hrs
	Sex determination in plants (Melandrium)	1hr
Unit IV	Extrachromosomal inheritance:	3 hrs
	a) Cytoplasmic male sterility (Maize) b) Mitochondrial inheritance	
	(Petite yeast) and c) Chloroplast inheritance (<i>Mirabilis</i>)	1

	PLANT BREEDING AND PLANT PROPAGATION (9hrs)	
U nit V	Scope and objectives of plant breeding. Contributions of Indian Scientists (any two) to plant breeding.	1 hr
	Vegetative propagation – Natural (root, stem and leaf) and Artificial (cutting, grafting and layering)	3 hrs
	Techniques of crop improvement - selection, introduction and hybridization	2 hrs
	Hybridization - types, inter-varietal, inter-specific and inter-generic. Methods of hybridization - Pedigree, bulk, back-cross and multiple cross Techniques of hybridization	2 hrs
	Mutation breeding Heterosis – types, effects and genetic basis Quarantine laws	1 hrs
ВО -	PRACTICALS - 6P2 CYTOLOGY, GENETICS, PLANT BREEDING & PROPAGATION	ſ